Learn Before
General Form of a Quasi-Linear Utility Function
Indifference Curve Equation for a Quasi-Linear Function
For a quasi-linear utility function of the form , the equation representing a single indifference curve is obtained by setting the utility level to a constant, . This yields the formula . This equation can be rearranged to express consumption as a function of free time (i.e., ), which is a necessary step for either plotting the curve or directly calculating its slope.
0
1
Tags
Social Science
Empirical Science
Science
Economy
Economics
CORE Econ
The Economy 1.0 @ CORE Econ
Ch.5 Property and Power: Mutual Gains and Conflict - The Economy 1.0 @ CORE Econ
Ch.1 The Capitalist Revolution - The Economy 1.0 @ CORE Econ
Introduction to Microeconomics Course
Related
Mathematically Deriving the Pareto Efficiency Curve for the Angela-Bruno Interaction
Angela's Specific Utility Function (u(t, c) = 4√t + c)
Angela's Participation Constraint for Contract Acceptance
Specific Function for Utility from Free Time (v(t) = 4√t)
Marginal Utility of Free Time for a Quasi-Linear Function
Indifference Curve Equation for a Quasi-Linear Function
Equivalence of Convex Quasi-Linear Preferences and Concavity of v(t)
Measuring Utility in Consumption Units via Quasi-Linear Preferences
Utility Function of Angela's Friend (u(t, c) = c + 75 ln(t))
A General Form for v(t) in Quasi-Linear Utility (v(t) = βt^α)
Independence of Marginal Utility from Income in Quasi-Linear Preferences
Marginal Utility of Income in a Quasi-Linear Function
Learn After
Derivation of the MRS for a Quasi-Linear Utility Function
Slope of a Quasi-Linear Indifference Curve
Quasi-Linear Utility and Vertically Parallel Indifference Curves